You Searched For: N-Cbz-L-asparagine


1,408  results were found

SearchResultCount:"1408"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-6800R-CY5.5)
Supplier: Bioss
Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12937R-FITC)
Supplier: Bioss
Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
UOM: 1 * 100 µl


New Transparency for European Customers

Have you noticed our new improved visibility on stock location at checkout?

Find out more

Enhancement to stock locations

Catalog Number: (BOSSBS-12937R-A647)
Supplier: Bioss
Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
UOM: 1 * 100 µl


Supplier: Thermo Fisher Scientific
Description: (±)-Aspartic acid 98
Supplier: Apollo Scientific
Description: L(+)-Aspartic acid
Supplier: Apollo Scientific
Description: Chiral intermediate for pharmaceuticals and agrochemicals; Materials for peptides.

Catalog Number: (BOSSBS-13322R-FITC)
Supplier: Bioss
Description: Glycosylation of asparagine residues in Asn-X-Ser/Thr motifs in proteins commonly occur in the lumen of the endoplasmic reticulum (ER). Glucosidase I catalyzes the first step in the N-linked oligosaccharide processing pathway. It specifically removes the distal alpha 1,2-linked glucose residue from the Glc3-Man9-GlcNAc2 oligosaccharide precursor. Glucosidase I contains a short cytosolic tail, a single pass transmembrane domain and a large C-terminal catalytic domain located on the luminal side of the ER. Mutations in the gene encoding Glucosidase I result in the congenital disorder glycosylation (CDG-IIb), which is characterized by generalized hypotonia, dysmorphic features, hepatomegaly, hypoventilation, feeding problems, seizures and death. Two point mutations in the Glucosidase I gene have been identified and result in amino acid substitutions, namely Arg486Thr and Phe652Leu, that affect polypeptide folding and active site formation.
UOM: 1 * 100 µl


Catalog Number: (MOLE15650008-100G)
Supplier: Molekula
Description: L(+)-Asparagine
UOM: 1 * 100 g

Market Source Item This is a MarketSource item. Additional charges may apply

Catalog Number: (BOSSBS-12937R-CY7)
Supplier: Bioss
Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
UOM: 1 * 100 µl


Supplier: Merck
Description: L(+)-Asparagine, Sigma-Aldrich®

Catalog Number: (BOSSBS-12937R)
Supplier: Bioss
Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12937R-CY3)
Supplier: Bioss
Description: CTBS is an evolutionarily conserved member of the glycosyl hydrolase 18 family of proteins. Localizing to the lysosome, CTBS plays a role in the degradation of asparagine-linked (Asn-linked) glycoproteins. Glycoproteins are translocated to lysosomes via endocytosis or autophagy where they are broken down by proteases and glycosidases. The catabolism of glycoproteins is an important step in the regular turnover of cellular contents and in maintaining the homeostasis of glycosylation. CTBS functions as a glycosidase that cleaves the reducing end GlcNAc from the core chitobiase unit of oligosaccharides. Before this reaction can occur, AGA (the lysosomal glycosylasparaginase) must first remove the Asn from the Asn-linked glycoprotein to expose the reducing end GlcNAc, thereby allowing CTBS to access the exposed moiety.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-6073R-HRP)
Supplier: Bioss
Description: Sodium-dependent lysophosphatidylcholine (LPC) symporter, which plays an essential role for blood-brain barrier formation and function. Specifically expressed in endothelium of the blood-brain barrier of micro-vessels and transports LPC into the brain. Transport of LPC is essential because it constitutes the major mechanism by which docosahexaenoic acid (DHA), an omega-3 fatty acid that is essential for normal brain growth and cognitive function, enters the brain. Transports LPC carrying long-chain fatty acids such LPC oleate and LPC palmitate with a minimum acyl chain length of 14 carbons. Does not transport docosahexaenoic acid in unesterified fatty acid. Specifically required for blood-brain barrier formation and function, probably by mediating lipid transport. Not required for central nervous system vascular morphogenesis (By similarity). Acts as a transporter for tunicamycin, an inhibitor of asparagine-linked glycosylation. In placenta, acts as a receptor for ERVFRD-1/syncytin-2 and is required for trophoblast fusion (PubMed:18988732).
UOM: 1 * 100 µl


Supplier: Merck
Description: L(+)-Asparagine, Sigma-Aldrich®

Supplier: MP Biomedicals
Description: L-Asparagine is used in cell culture media and is a component of MEM non-essential amino acids solution. L-Asparagine has been shown to enhance ornithine decarboxylase activity in cultured human colon adenocarcinoma Caco-2 cells and in cultured IEC-6 intestinal epithelial cells. Spore germination in Bacillus subtilis has been increased in the presence of L-asparagine.

Catalog Number: (BOSSBS-6800R-HRP)
Supplier: Bioss
Description: Component of the N-oligosaccharyl transferase enzyme which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). Loss of the DAD1 protein triggers apoptosis.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on 0800 22 33 44.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on 0800 22 33 44
Additional Documentation may be needed to purchase this item. A VWR representative will contact you if needed.
Additional Documentation may be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalogue Number listed above. If you need further assistance, please call VWR Customer Service on 0800 22 33 44.
49 - 64 of 1,408
no targeter for Bottom