You Searched For: Flow+Cells


125,704  results were found

SearchResultCount:"125704"

Sort Results

List View Easy View

Rate These Search Results

Catalog Number: (BOSSBS-12179R-CY3)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12179R-A647)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12179R-A555)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12179R-CY7)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Supplier: Tonbo Biosciences
Description: The 3G3 antibody reacts with mouse Foxp3, a 50-55 kDa transcription factor which is a central regulator of T cell activity and is critical for the development and function of regulatory T cells (Tregs). Foxp3 is expressed at constitutively high levels in Treg cells, which are further identified as being CD4+ CD25+. In resting conventional T cells (CD4+ CD25-) Foxp3 expression is restricted, and upon TCR activation is expressed only transiently and in a small proportion of cells. However, the growth factor TGF-beta has been shown to induce expression of Foxp3 in naïve T cells, driving their development into Foxp3+ Tregs, which are called “induced” or “adaptive” Tregs. These cells are phenotypically similar to so-called “natural” Tregs (CD4+ CD25high Foxp3+) which originate in the thymus and comprise the majority of Treg cells. Tregs are critical for maintaining peripheral tolerance and are implicated in the development of autoimmunity. It is important to review the literature in choosing an antibody for the Foxp3 antigen in flow cytometry, as the potential for high background or non-specific staining may be observed. The 3G3 antibody may be used for intracellular detection of Foxp3 in cells from mouse and Rhesus macaque.

Catalog Number: (AATB36310)
Supplier: AAT BIOQUEST
Description: Cell Meter™ flow cytometric calcium assay kit provides fluorescence-based assays for detecting intracellular calcium mobilisation using a flow cytometer.
UOM: 1 * 100 Tests


Catalog Number: (BOSSBS-12180R)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (TNB-6671-KIT)
Supplier: Tonbo Biosciences
Description: The incorporation of BrdU into newly synthesized DNA by actively cycling cells is one method for measuring the changing amount of cellular DNA during cell proliferation through each of the cell cycle phases. As a thymidine analog, BrdU is preferentially incorporated into newly replicated DNA which can then be subsequently labeled and analyzed to determine relative DNA content and cell cycle position. Incorporation of BrdU is most commonly detected using anti-BrdU antibodies. A BrdU solution is provided for exposure of actively cycling cells to incorporate BrdU. The EZ-BrdU Kit employs an acid denaturation step. The mild acid method used helps reduce damage to other cellular proteins. After the denaturation step, cells are stained with a FITC anti-BrdU antibody and total DNA is counterstained with a PI/RNase A solution. Two color flow cytometry can then be used to analyze cells that have incorporated BrdU (proliferating cells) in terms of their cell cycle position (G0/1, S, or G2/M phase). The EZ-BrdU Kit is shipped in one container and consists of two packages. Upon arrival one should be stored at 2-8°C and the other at -20°C.
UOM: 1 * 60 Tests


Catalog Number: (BOSSBS-12180R-A750)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down's syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12179R-HRP)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12180R-CY5)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BOSSBS-12179R-CY5)
Supplier: Bioss
Description: The KIR family of potassium channels possess a greater tendency to allow potassium to flow into the cell rather than out of it. Kir4.1, also known as Kir1.2, is highly expressed in brain including glial cells, astrocytes and cortical neurons. Kir4.1 is also expressed in myelin-synthesizing oligodendrocytes and is crucial to myelination in the developing nervous system. The gene encoding human Kir4.1 maps to chromosome 1. Kir4.2, also known as Kir1.3, is expressed in kidney, lung, heart, thymus and thyroid during development. The gene encoding human Kir4.2 maps to chromosome 21 in the Down syndrome chromosome region 1, and Kir4.2 may play a role in the pathogenesis of Down’s syndrome. Kir 5.1 forms functional channels only by coexpression with either Kir4.1 or Kir4.2 in the kidney and pancreas. The gene encoding human Kir5.1 maps to chromosome 17.
UOM: 1 * 100 µl


Catalog Number: (BSENM-1836-100)
Supplier: Biosensis
Description: The protein named TrkB (also named Neurotrophic tyrosine kinase receptor type 2 (NTRK2), GP145-TrkB or Tropomyosin-related kinase B is a receptor tyrosine kinase involved in the development and the maturation of the central and the peripheral nervous systems and is important in the regulation of neuron survival, proliferation, migration, differentiation, and synapse formation and plasticity. TrkB may also play a role in neutrophin-dependent calcium signaling in glial cells and mediate communication between neurons and glia. TrkB is the primary receptor for BDNF (brain-derived neurotrophic factor. TrkB also binds NT4 and NT3 but less efficiently. (Reference: www.uniprot.org).

Applications: Flow Cytometry (5-10 ug/mL): Tested on human and rodent cell lines. Cell staining can be performed under native conditions on ice, or on fixed cells with up to 4% formaldehyde. Other applications have not been tested. Biosensis recommends optimal dilutions/concentrations should be determined by the end user.
UOM: 1 * 100 µG


Catalog Number: (28-9666-87)
Supplier: Cytiva
Description: UV flow cell, I.Ø 8 mm
UOM: 1 * 1 items


Catalog Number: (ORFLMXC032)
Supplier: Orflo
Description: Moxi GO II/Moxi V/Moxi Flow cassettes, type S+, two tests per cassette (500 tests)
UOM: 1 * 250 items


Catalog Number: (BOSSBS-15559R-FITC)
Supplier: Bioss
Description: IFT140 is a gene encodes one of the subunits of the intraflagellar transport (IFT) complex A. Intraflagellar transport is involved in the genesis, resorption and signaling of primary cilia. The primary cilium is a microtubule-based sensory organelle at the surface of most quiescent mammalian cells, that receives signals from its environment, such as the flow of fluid, light or odors, and transduces those signals to the nucleus. Loss of the corresponding protein in mouse results in renal cystic disease.
UOM: 1 * 100 µl


Inquire for Price
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on 0800 22 33 44.
Stock for this item is limited, but may be available in a warehouse close to you. Please make sure that you are logged in to the site so that available stock can be displayed. If the call is still displayed and you need assistance, please call us on 0800 22 33 44
Additional Documentation may be needed to purchase this item. A VWR representative will contact you if needed.
Additional Documentation may be needed to purchase this item. A VWR representative will contact you if needed.
This product has been blocked by your organisation. Please contact your purchasing department for more information.
The original product is no longer available. The replacement shown is available.
Product(s) marked with this symbol are discontinued - sold till end of stock. Alternatives may be available by searching with the VWR Catalogue Number listed above. If you need further assistance, please call VWR Customer Service on 0800 22 33 44.
321 - 336 of 125,704
no targeter for Bottom